Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors
نویسندگان
چکیده
Metallacyclobutanes are an important class of organometallic intermediates, due to their role in olefin metathesis. They can have either planar or puckered rings associated with characteristic chemical and physical properties. Metathesis active metallacyclobutanes have short M-Cα/α' and M···Cβ distances, long Cα/α'-Cβ bond length, and isotropic 13C chemical shifts for both early d0 and late d4 transition metal compounds for the α- and β-carbons appearing at ca. 100 and 0 ppm, respectively. Metallacyclobutanes that do not show metathesis activity have 13C chemical shifts of the α- and β-carbons at typically 40 and 30 ppm, respectively, for d0 systems, with upfield shifts to ca. -30 ppm for the α-carbon of metallacycles with higher d n electron counts (n = 2 and 6). Measurements of the chemical shift tensor by solid-state NMR combined with an orbital (natural chemical shift, NCS) analysis of its principal components (δ11 ≥ δ22 ≥ δ33) with two-component calculations show that the specific chemical shift of metathesis active metallacyclobutanes originates from a low-lying empty orbital lying in the plane of the metallacyclobutane with local π*(M-Cα/α') character. Thus, in the metathesis active metallacyclobutanes, the α-carbons retain some residual alkylidene character, while their β-carbon is shielded, especially in the direction perpendicular to the ring. Overall, the chemical shift tensors directly provide information on the predictive value about the ability of metallacyclobutanes to be olefin metathesis intermediates.
منابع مشابه
Relationship between 13C NMR Parameters and Antimalarial activity of Cryptolepine Isosteres
Density functional theory calculations were applied to investigate 13C Chemical Shielding (CS) tensors in cryptolepine (1) and its sulfur (2) and oxygen (3) isosteres. The results showed that the CS of carbon nuclei in these compounds may be divided into three types. First, carbons type α,are those directly bonded to X (X= NH, S, O) and σ 33 shielding component of these carbons are deshield...
متن کاملNano Theoretical Study of NMR Shielding Tensors on Ginger Plant
In this research, the Magnetite nanoparticles (Fe304) were prepared by coprecipitation of Fe- andGinger is a well known spice and flavoring agent which has also been used in traditional medicine inmany countries. Ginger contains essential oils including gingerol and zingiberene. It also containspungent principles such as zingerone, and shogaol. In the paper six theoretical methods were used toc...
متن کاملAb Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملChemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
Knowledge of (13)C chemical shift anisotropy (CSA) tensors in nucleotide bases is important for interpretation of NMR relaxation data in terms of local dynamic properties of nucleic acids and for analysis of residual chemical shift anisotropy (RCSA) resulting from weak alignment. CSA tensors for protonated nucleic acid base carbons have been derived from measurements on a uniformly (13)C-enrich...
متن کاملAn Experimental and Theoretical Investigation of the Olefinic Carbon Chemical Shift Tensors in trans-Stilbene and Pt(η-trans-stilbene)(PPh3)2
The olefinic carbon chemical shift tensors of trans-stilbene-R,â-C2 (1) and (trans-stilbene-R,â-C2)[bis(triphenylphosphine)]platinum(0) (2) have been characterized by solid-state 13C NMR spectroscopy. Analyses of the 13C NMR spectra obtained for stationary powder samples of 1 and 2 at 4.7 and 9.4 T yield the principal components of the carbon chemical shift tensors. The presence of a homonuclea...
متن کامل